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Abstract. The theory of averaged lagrangians is extended to the case of lagrangians contain- 
ing higher derivatives. The frequency equation and averaged stored energy of oscillatory 
systems are expressed in terms of the averaged lagrangian. The relation between averaged 
energy and the averaged hamiltonian is discussed and finally the analysis is applied to two 
well known mechanical examples and compared with the conventional approach. 

1. Introduction 

The success of an approach to linear and nonlinear wave problems based on an averaged 
lagrangian density as the fundamental quantity is well known. Whitham (1967) first 
introduced the approach in connection with the nonlinear interaction of water waves. 
Subsequently the method has been used in many applications in a great variety of 
fields ; for example, to the interaction between hydromagnetic waves (Dewar 1970), 
to plasma wave interactions (Boyd and Turner 1972), to various water wave problems 
(eg Simmons 1969), and to the astrophysical theory of density waves in the spiral arms 
of the galaxies (Dewar 1972). The method has also been used in general investigations 
of wave problems (eg Bretherton and Garrett 1969, Hayes 1970, Askne 1972a). 

However, these theories have been confined to the case of lagrangians which contain 
first derivatives only of the field variable. On the other hand, there has recently been a 
marked interest in lagrangians of a more general form. Several attempts have been 
made to formulate a consistent field theory in terms of lagrangians containing higher 
derivatives (Coelho de Souza and Rodrigues 1969, and references therein). The problem 
of establishing a hamiltonian formalism has also been discussed within the so called 
generalized mechanics, which is an analytical mechanics based on lagrangians containing 
higher derivatives (Borneas 1972). The further question of a consistent quantization 
procedure has caused several controversies (cf Hayes 1969, Kimura 1972). 

The study of generalized lagrangians can also be motivated by the following observa- 
tion. As is well known, an ordinary differential equation of degree n > 1 can be written 
as a system of coupled first-order equations simply by introducing new functions 
defined in terms of suitable derivatives of the original function. There are many instances 
where this process can be reversed, that is, given a system of first-order equations we 
can eliminate all functions but one to obtain an equation of higher degree in the remaining 
function. (This is certainly possible for the case of linear first-order differential equation 
systems with constant coefficients, which will be studied below.) Which representation 
is preferred varies from problem to problem. However, the important point is, that 
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the corresponding theories of differential equations have both been developed to a 
high degree of sophistication. 

The situation is quite similar within the variational calculus where a lagrangian 
containing higher derivatives can be reduced to one containing first derivatives only 
at the expense of an increased number of functions. Conversely, we can use the variational 
equations to eliminate all functions but one from a lagrangian involving several functions 
and their first derivatives. (This might not always be possible, cf above.) 

In contrast with the theory of ordinary differential equations, all emphasis in the 
variational calculus has been on the formulation which uses first derivatives only. 
The purpose of this article is to work towards a more balanced situation in this respect 
by extending the technique of averaged lagrangians to the case of generalized mechanics. 
In doing this, it is hoped that the theory of averaged lagrangians will gain more flexibility 
and admit greater possibilities of choice. 

We will show that the conventional expressions for the frequency equation and 
averaged energy of oscillations in terms of averaged lagrangians are still valid in the 
generalized case of lagrangians containing higher-order derivatives. This is shown 
quite generally using the lagrangian multiplier technique. To illustrate a more tangible 
approach we also give an alternative direct proof for the case of linear lagrangians 
using a definite representation. Although the lagrangian which corresponds to a 
certain differential equation is not unique, we prove that the averaged lagrangian is a 
quantity which is uniquely determined. The relation between the hamiltonian and the 
energy of the system is discussed. Finally some mechanical applications are given which 
lead to a formulation in terms of lagrangians with higher-order derivatives and a 
comparison is made with the standard approach. 

2. General theory of averaged lagrangians 

Consider a lagrangian of the general form L = L(x, Dx, . . . , DNx) where x is a generalized 
coordinate function depending upon the variable t and D"x = d"x/dt". The generalized 
variational equation corresponding to L is (Borneas 1972) : 

6L aL 
6x n = O  
- =  2 (-DY(-) a(Dnx) = O .  

We shall study lagrangians whose linearized variational equation admits uniform 
oscillatory solutions, that is, solutions of the form 

x = +(a exp(iot) + a* exp( - iot)} = Re ( a  exp(iot)} 

where the asterisk denotes complex conjugate and a and w are the constant amplitude 
and angular frequency respectively of the oscillation. If we insert the uniform solution 
into the lagrangian and average over one period, of oscillation we obtain the averaged 
lagrangian (L) as 

( L )  will depend only on the three variables a, a*, and o. It is known (see for instance 
Bretherton and Garrett 1969) that if L contains first derivatives at  most of the variable x, 
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then the frequency equation of the oscillation is determined by 

a ( L )  
da aa* 

-- a(L> -0- 

and the averaged hamiltonian ( H )  by 

We will show that equations (2.3) and (2.4) are still valid when higher-order derivatives 
are present in L.  This can be accomplished by rewriting the general lagrangian in a 
form for which the original theory is applicable. For that purpose we introduce the new 
variables x,(n = 0,1,. . . , N )  through the relations 

Dx, = x,+1 

xo = x. 

n = O, l ,  . . . ,  N - 1  

Using the technique of lagrangian multipliers (Gelfand and Fomin 1965) we regard 
(2.5) as subsidiary conditions and write 

' N - 1  

L(x, Dx, . . . , DNx) = L(x0, XI,. . . , x N ) +  C A,(Dx,-x,+ 1) 
n = O  

= @(xo, DxO, X I ,  Dx1,. . . , xN, 2 0 , .  . . , L N -  1) (2.6) 

where &(n = 0, 1 ,  . . . , N - 1) are the lagrangian multipliers. The lagrangian L can be 
treated by conventional methods and after averaging we obtain 

(2.7) <L>(a, a*, 4 = (@>(a,, a,*, A,, A,*, 4 
where 

x, = Re{a, exp(iwt)} (n  = O , l ,  . . . ,  N )  

and 

1, = Re{A, exp(iwt)} (n  = 0 ,1 ,  . . . ,  N - 1 ) .  

The frequency equation is obtained from the system 

and the averaged hamiltonian is given by 

(2.9) 

However, we can also regard equations (2.8) as a system which specifies a,, a,*, A,, 
and A,* as functions of a. = a, a3 = a*, and w, that is, 

a, = a,(a, a*, w) 

A, = A,(u, a*, w) 

a,* = a,*(a, a*, w) n = 1,2, . . . ,  N 

n = 1,2 , .  . . , N - 1. (2.10) A,* = /\,*(a, a*, w) 
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This implies that 

(2.1 1) 

by means of equations (2.8). Analogously we obtain 

and consequently 

a(L)  a@) A (H) = o,--(L) = w,--(L) = ( R ) .  
0 0  OW 

(2.12) 

(2.13) 

Equations (2.11) and (2.13) show that the conventional expressions for the frequency 
equation and averaged hamiltonian are still valid for general lagrangians containing 
higher derivatives. 

Conversely, if we start from a lagrangian of the form @ = @(x, , Dx, , x2,  . . . , xN , Dx,) 
and the subsequent averaged form (L)(a, ,  a,*, m) we can easily obtain an averaged 
generalized lagrangian ( L )  as follows. The frequency equation system of (@) is 

(2.14) 

We now use equations (2.14) to express all a, and a,* in one preferred coordinate which 
we call a. This yields 

a, = a,(a, a*, w) a,* = a,*(a, a*, m) n = 1,2 , . .  ., N .  (2.15) 

Inserting these expressions into ( L  ) we obtain 

( ~ ) ( a ,  a*, 0) = @)(a,, a,*, 0). (2.16) 

Then, in the same way as above, we obtain expressions for the frequency equation and 
averaged hamiltonian in terms of the generalized lagrangian ( L ) .  These results are 
in form identical with equations (2.11) and (2.13). We note, that the procedure leading 
to equation (2.15) is analogous to that used by Askne (1972b) in his work on quantization 
of waves in dispersive media in terms of averaged lagrangians. 

3. Linear problems in generalized mechanics 

In order to make a more detailed study of some aspects of the theory of averaged 
lagrangians and their connection with generalized mechanics we will restrict the following 
analysis to linear variational problems, that is, we assume that the variational equation 
(2.1) is of the form 

P(D)x = 0 (3.1) 

where P(D) is a linear self-adjoint differential operator with constant coefficients. 
Every lagrangian, which corresponds to a linear variational problem as given by equation 
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(3.1), is of the following general form: 

L = 1 am,,DmxD"x 
m , n  

where am," are constant. We prefer to work with an explicit expression for L although 
most of the results given below could have been obtained in a form-invariant way. 

We have shown (Anderson 1973) that corresponding to every bilinear lagrangian 
of the form (3.2) there is a lagrangian quadratic in the coordinate function x and its 
derivatives which is equivalent to the former in the sense that both give rise to the same 
differential equation. Furthermore the quadratic lagrangian is uniquely determined 
by the corresponding variational equation. These results are essentially obtained by 
repeated use of the following identity : 

D"xD"x = D ( D m - l D " ~ ) - D m - l ~ D " + l ~  (3.3) 

and the well known fact that a total derivative in a lagrangian does not contribute to the 
variational equation. However, it is trivial to show that (DmxDnx) = - (D"- 'xD"+ 'x) 
or equivalently (D(Dm-'xD"x)) = 0. This implies that all lagrangians, which are 
equivalent, have the same averaged lagrangian. This result, together with the theory 
of quantization in terms of averaged lagrangians put forward by Askne (1972b), might 
have some interesting consequences for the following disputed problem in generalized 
mechanics. It has turned out that, if L ,  and L,  are equivalent lagrangians, it might 
perfectly well happen that the quantization of the corresponding problem in terms of 
L ,  gives no trouble at all while for L,  a consistent quantization procedure is very hard 
to find. This difficulty becomes acute already in the seemingly simple problem of 
quantization of the harmonic oscillator (see Hayes 1969, Kimura 1972). A quantization 
theory based on the (unique) averaged lagrangian obviously avoids this problem which 
is due to the ambiguity of the lagrangian characterizing a certain variational equation. 

Resuming our analysis, the averaged lagrangian corresponding to equation (3.1) 
can be determined as follows. It is easy to show that a possible choice of lagrangian 
characterizing equation (3.1) is L = ixP(D)x which gi-ves directly 

(L) = $P(o)aa* (3.4) 
where P(w) denotes P(D) with D = iw. Since P(D) is self-adjoint (see eg Lanczos 1961), 
we conclude that P(w) is real. 

We will now proceed to give a direct proof of relations (2.3) and (2.4) for the case of 
linear, generalized lagrangians. For that purpose we use the equivalent normal form 
of L mentioned above. This is by no means necessary, but it gives shorter and neater 
computations than the general bilinear form (equation (3.2)). Thus we have for L 

N 

L = i 1 a,(D"x)* 
n = O  

which yields the averaged lagrangian 

( L )  = + C a,w,w,*aa* 
N 

n = O  

(3.5) 

(3.6) 

where we have introduced the notations w, = (iw)" ( n  = 0, 1,. . . , N ) .  This implies that 
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is equivalent to ( L )  = 0 or inserting the expressions for on we get 
N 2 anw2" = 0. 

n = O  

This constitutes an algebraic equation for w, that is, the frequency equation. 
The hamiltonian H corresponding to a generalized lagrangian is (see Borneas 1972) 

N 
H = C DmxPm-L 

m = l  

where the generalized momenta P, are given by 

Some straightforward calculations yield for the average of H 

a ( L )  ( L )  

d ( L )  ( L )  

N 

( H )  = 1 2non-- 
n =  1 awn 

= 1 2no,*---- 
n =  1 am,* 

N 

(3.9) 

(3.10) 

(3.11) 

where ( L )  is considered as a function of the variables on, a,*, a, and U* .  This also implies 
that 

(3.12) 

and we obtain the result (2.13) as we should. 

4. Averaged energy density 

In this section we will discuss the consequences of the fact that although the hamiltonian 
H is a constant of the motion, it does not necessarily represent the physical energy of 
the system. For this to be the case we must have a lagrangian which is energetically 
correct, an expression which will be clarified below. We introduce for a moment an 
external force F acting on the system and consider the inhomogeneous equation 

P(D)x = F .  (4.1) 

x is a displacement coordinate and the power delivered to the system is given by uF, where 
U = Dx is the velocity (cf Askne 1972a, Bretherton and Garret 1969). 

The total lagrangian L of equation (4.1) is the sum of two parts L, and L,  correspond- 
ing to homogeneous and particular parts respectively, that is, L,  is a bilinear lagrangian 
of the form studied in the preceding paragraphs and L, = + xF. Averaging L we obtain 

( L )  = (Lh)+(xF) .  (4.2) 

This situation is implicity assumed when one concludes that the averaged energy ( W )  
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of the free oscillations ( F  = 0) is given by the averaged hamiltonian ( H ) .  A direct proof 
of this is given in appendix 1. Then we have 

where we have used the fact that ( L h )  = 0 for free oscillations. The distinction between 
( W )  and ( H )  is decisive, for example, in the following situation. Consider a general 
case of coupled equations as given by the matrix equation 

P(D)x = F (4.4) 
where P(D) is a linear matrix operator and xand Fare vectors specifying the displacement 
coordinates and the external forces respectively. If we eliminate all equations but one 
and keep only the force F corresponding to the remaining variable x, we obtain 

Q(D)x = R(D)F (4.5) 

because generally we must operate on F with some differential operator R(D) in order 
to obtain the desired elimination. As before equation (4.5) is assumed self-adjoint, 
which implies that R(D) is a self-adjoint operator. However, in this case we have for 
the average of L, 

(L,) = (xR(D)F) = R ( o ) ( x F )  

which implies that 

where we have introduced the notation (Lh)  = (L,)/R(o). 
(Lh)  both yield the same frequency equation but not the same 
This gives by means of equation (2.10) 

(4.6) 

(4.7) 

Note that (Lh)  and 
averaged hamiltonian. 

(4.8) 

Finally we point out that the analysis is not restricted to a mechanical context, but 
should be applicable to all kinds of wave motion where it is possible to find a pair 
( x , F )  such that x characterizes the wave motion and F the external source and the 
product Dx. F gives the power delivered to the system (cf Askne 1972a). 

5. Applications 

As a simple application we shall study the following example, which has the advantage 
of making possible a direct comparison with the standard procedure. 

Consider the harmonic oscillator 

- mD2x - k x  = 0. (5.1) 

The lagrangian of this problem is conventionally taken to be 

L ,  = +m(Dx)’ -&x2 
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which gives the averaged lagrangian 

The frequency equation is 

The averaged stored energy is obtained as 

(5.3) 

(5.4) 

However, a lagrangian characterizing equation (5.1) could equally well be taken as 
(Hayes 1969): 

L = - i m x D 2 x  - r k x 2  (5.6) 

which contains the second derivative of x .  (Quantization in terms of this lagrangian 
has proved very intricate.) By means of the analysis presented here we see that 
( L , )  = ( L )  since L and L ,  only differ by a total derivative ( L ,  = L + + m D ( x D x ) )  
and the results obtained from ( L )  are consequently the same as those above. 

A less trivial example is the following. Consider a general undamped system with 
two degrees of freedom, for example, consisting of two masses m ,  and m2 suspended by 
springs ( k ,  and k , )  and tied together by a coupling spring ( k 3 ) .  x 1  and x 2  denote the 
displacement coordinates. The equations of motion are (see eg den Hartog 1947): 

- m , D 2 x ,  - ( k ,  + k 3 ) x 1  + k 3 x 2  = 0 

- m , D 2 x ,  - ( k 2  + k , ) x ,  + k 3 x ,  = 0. 

The lagrangian of the equation system (5.7) is 

(5.7) 

L = L ( x , , D x , , x , , D x , )  

= i { m , ( D x J 2  + m , ( D ~ ~ ) ~ - ( k ,  + k 3 ) x : - ( k 2 + k 3 ) x ~ + 2 k 3 x I x 2 )  ( 5 . 8 )  

with the corresponding averaged lagrangian 

( L )  = b { ( m , 0 2 - k l  - k 3 ) a , a ~ + ( m 2 ~ 2 - k 2 - k 3 ) a 2 a ~ + k 3 ( a , a ~ + a ~ a 2 ) ) .  (5.9) 

The frequency equation system is 

-- a(L) - 0 a (mlo2 - k ,  - k3)a ,  + k 3 a ,  = 0 

-- a> - 0 a ( m 2 w 2  - k ,  - k3)a ,  + k3a,  = 0. 

aaT 

aa: (5.10) 

The vanishing of the secular determinant yields the frequency equation 

M 2 ( 0 4  -KO, + ~ 1 )  = 0 (5.1 1) 

where M 2  = m l m 2 ,  K = ( k ,  + k 3 ) / m ,  + ( k ,  + k 3 ) / m , ,  and ct2 = ( k , k ,  + k , k 3 ) / M 2 .  The 
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averaged energy is 

a@> 
a. ( W )  = a-- (L) = $02(m,ala:+m,a2a:) 

or in terms of coordinate a ,  

m,u w2-2u2/u 
( W >  =-  ala:. 2 o2 - ( k ,  + k , ) jm ,  

(5.12) 

(5.13) 

On the other hand, if we eliminate the coordinate x, from the system (5.7) we obtain 

Q(D)xi = R(D)Fi (5.14) 

where we have introduced an external force F ,  in accordance with the normalization 
procedure discussed in the previous paragraph. Q(D) and R(D) are given by 

Q(D) = - M2(D4 + uD2 +az); (5.15) 

A lagrangian corresponding to the homogeneous part is given by 

R(D) = - {m,DZ + ( k 2  + k , ) } .  

Lh(X1, Dx1, D2Xl) = 3 M 2 { ( D 2 X , ) 2 - ~ ( D ~ 1 ) 2 + ~ 2 X : )  (5.16) 

which contains the second derivative of x1 . The average of Lh is 

( Lh) = iM2(04 - u o 2  + a2)alaT (5.17) 

and using the notations of 0 4 we obtain 

M2(04 - K O 2  -k U’) 
a 

4{ mzw2 - ( k ,  + k , ) !  (Lh) = (5.18) 

It is now easy to show that the frequency equation and averaged energy obtained from 
(Lh) coincide with the result given in equations (5.11) and (5.13). 
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Appendix 1 

We will show here that the hamiltonian H corresponding to equation (4.1) is directly 
related to the stored energy W of the system. If we multiply equation (4.1) with Dx 
we obtain 

DxP(D)x = FDx. (A. 1) 
The right-hand side of equation (A.l) is the power delivered to the system and if we can 
write the left-hand side as DW, then equation (A.l) becomes a conservation equation, 
which makes it possible to identify W with the stored energy of the system. We can 
rewrite the left-hand side of equation (A.l) as follows: 
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By means of the Lagrange identity (see eg Ince 1944), we get 

xDP(D)x = DC(x, X) + xDP(D)x (A.3) 

- where C(x, x) is the bilinear concomitant corresponding to the operator DP(D) and 
DP(D) the adjoint operator. However, since P(D) is self-adjoint we get 

- 
DP(D) = -DP(D) 

which implies 

xDP(D)x = ~DC(X,  x). 64.4) 

W = xP(D)x - ~ C ( X ,  x). 64.5) 

Using this result together with equation (A.2) we obtain 

This expression will be put into a more familiar form. Write P(D) as 
N 

P(D) = 1 bnD". 
n = O  

Then the concomitant is given by (cf Ince 1944) 
N n 

C(X, X) = b, 1 (( - D ) k ~ ) ( D n - k ~ ) .  
n = l  k = O  

Equation (AS) then becomes 

But from appendix 1 and equation (4.2) we get L, = -)xP(D)x and after doing some 
algebra including a change of summation variables we obtain 

n 
aLh 

N 

W =  -L,+ 1 D"x (-l)n+k(-D)k- 
n =  1 k =  1 a( D" + k )  . 

But since P(D) is self-adjoint, b, = 0 for odd n, which implies 

for n + k  odd aLtl 
a(Dn+kx) = O 

and we obtain (see equations (3.7) and (3.8)) 
N 

W = 1 DnxPn-Lh = H 
n = l  

where P,, are the generalized momenta corresponding to L,. 

References 

(A.lO) 

(A . l l )  

Anderson D 1973 J .  math. Phys. to be published (July or August) 
Askne J 1972a Int. J .  Electron. 32 573-91 
~ 1972b J .  Phys. A :  Gen. Phys. 5 1578-86 
Bomeas M 1972 Am.  J .  Phys. 40 248-51 
Boyd T M and Tumer J G 1972 J .  Phys. A :  Gen. Phys. 5 881-96 
Bretherton F P and Garrett C J R 1969 Proc. R. Soc. A 302 529-54 



Averaged lagrangians containing higher derivatives 

Coelho de Souza L M C and Rodrigues P R 1969 J .  Phys. A :  Gen. Phys. 2 30410 
Dewar R L 1970 Phys. Fluids 13 2710-20 

~ 1972 Astrophys. J. 174 301-9 
Gelfand I M and Fomin S V 1965 Calculus of Variations (New York: Prentice-Hall) pp 42-50 
den Hartog J P 1947 Mechanical Vibrations (New York: McGraw-Hill) p 104 
Hayes C F 1969 J .  math. Phys. 10 1555-8 
Hayes W D 1970 Proc. R. Soc. A 320 187-208 
Ince E L 1944 Ordinary Diflerential Equations (New York: Dover) pp 2104  
Kimura T 1972 Lett. Nuouo Cim. 5 81-5 
Lanczos C 1961 Linear Diflerential Operators (London: Van Nostrand) p 226 
Simmons W F 1969 Proc. R. Soc. A 309 551-75 
Whitham G B 1967 Proc. R. Soc. A 299 6 2 5  

1139 


